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Phylogenetic hidden Markov models, or phylo-HMMs, are probabilistic mod-
els that consider not only the way substitutions occur through evolutionary
history at each site of a genome, but also the way this process changes from
one site to the next. By treating molecular evolution as a combination of
two Markov processes—one that operates in the dimension of space (along a
genome) and one that operates in the dimension of time (along the branches
of a phylogenetic tree)—these models allow aspects of both sequence structure
and sequence evolution to be captured. Moreover, as we will discuss, they per-
mit key computations to be performed exactly and efficiently. Phylo-HMMs
allow evolutionary information to be brought to bear on a wide variety of
problems of sequence “segmentation,” such as gene prediction and the iden-
tification of conserved elements.

Phylo-HMMs were first proposed as a way of improving phylogenetic mod-
els that allow for variation among sites in the rate of substitution [8, 52].
Soon afterward, they were adapted for the problem of secondary structure
prediction [10, 47], and some time later, for the detection of recombination
events [19]. Recently there has been a revival of interest in these models
[40, 42, 43, 44, 31], in connection with an explosion in the availability of
comparative sequence data, and an accompanying surge of interest in com-
parative methods for the detection of functional elements [35, 3, 23, 46, 41].
There has been particular interest in applying phylo-HMMs to a multi-species
version of the ab initio gene prediction problem [40, 43, 31].

In this chapter, phylo-HMMs are introduced, and examples are presented
illustrating how they can be used both to identify regions of interest in mul-
tiply aligned sequences, and to improve the goodness of fit of ordinary phylo-
genetic models. In addition, we discuss how hidden Markov models (HMMs),
phylogenetic models, and phylo-HMMs all can be considered special cases
of general “graphical models,” and how the algorithms that are used with
these models can be considered special cases of more general algorithms. This
chapter is written at a tutorial level, suitable for readers who are familiar with
phylogenetic models but have had limited exposure to other kinds of graphical
models.
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Fig. 1. (A) A 3-state single-sequence HMM, with a multinomial distribution as-
sociated with each state (boxed tables). A new state is visited at each time step,
according to the indicated transition probabilities (numbers on arcs), and a new
character is emitted, according to the probability distribution for that state. The
shaded boxes indicate the current state and a newly emitted character, which is ap-
pended to the sequence X. In this example, one state has an A+T rich distribution
(s1), one has a G+C rich distribution (s2), and one favors purines (s3). (B) An
analogous phylo-HMM. In this case, the multinomial distributions are replaced by
phylogenetic models, and at each time step a new column in a multiple alignment
X is emitted. The phylogenetic models include parameters describing the overall
shape and size of the tree, as well as the background distribution for characters
and the pattern of substitution. For simplicity, the tree parameters are represented
graphically, and only one auxiliary parameter is shown.

1 Background

A phylo-HMM can be thought of as a machine that probabilistically generates
a multiple alignment, column by column, such that each column is defined by a
phylogenetic model. As with the single-sequence HMMs ordinarily used in bi-
ological sequence analysis [6], this machine probabilistically proceeds from one
state to another1, and at each time step it “emits” an observable object, which
is drawn from the distribution associated with the current state (Figure 1).
With phylo-HMMs, however, the distributions associated with states are no
longer multinomial distributions over a set of characters (e.g., {A,C,G,T}),
but are more complex distributions defined by phylogenetic models.

Phylogenetic models, as considered here, define a stochastic process of sub-
stitution that operates independently at each site in a genome (the question

1 Throughout this chapter, it is assumed that the Markov chain for state transitions
is discrete, first-order, and homogeneous.
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of independence will be revisited below). In the assumed process, a character
is first drawn at random from the background distribution and assigned to the
root of the tree; character substitutions then occur randomly along the tree’s
branches, from root to leaves. The characters that remain at the leaves when
the process has completed define an alignment column. Thus, a phylogenetic
model induces a distribution over alignment columns having a correlation
structure that reflects the phylogeny and substitution process (see [10]). The
different phylogenetic models associated with the states of a phylo-HMM may
reflect different overall rates of substitution (as in conserved and nonconserved
regions), different patterns of substitution or background distributions (as in
coding and noncoding regions), or even different tree topologies (as with re-
combination [19]).

Typically with HMMs, a sequence of observations (here denoted X) is
available to be analyzed, but the sequence of states (called the “path”) by
which the observations were generated is “hidden” (hence the name “hidden
Markov model”). Efficient algorithms are available to compute the maximum-
likelihood path, the posterior probability that any given state generated any
given element of X, and the total probability of X considering all possible
paths (the likelihood of the model). The usefulness of HMMs in general, and
phylo-HMMs in particular, is in large part a consequence of the fact that these
computations can be performed exactly and efficiently. In this chapter, three
examples of applications of phylo-HMMs will be presented that parallel these
three types of computation—prediction based on the maximum-likelihood
path (example 1), prediction based on posterior probabilities (example 2),
and improved goodness of fit, as evidenced by model likelihood (example 3).
Finally, it will be shown how these algorithms may be considered special cases
of more general algorithms, by regarding phylo-HMMs as graphical models.

2 Formal Definition of a Phylo-HMM

Formally, we define phylo-HMM θ = (S,ψ,A,b) to be a four-tuple, consisting
of a set of states, S = {s1, . . . , sM}, a set of associated phylogenetic models,
ψ = {ψ1, . . . ,ψM}, a matrix of state-transition probabilities, A = {aj,k}
(1 ≤ j, k ≤ M), and a vector of initial-state probabilities, b = (b1, . . . , bM ). In
particular, ψj is the phylogenetic model associated with state sj (1 ≤ j ≤ M),
aj,k (1 ≤ j, k ≤ M) is the conditional probability of visiting state k at some
site i given that state j is visited at site i − 1, and bj (1 ≤ j ≤ M) is
the probability that state j is visited first (thus,

∑
k aj,k = 1 for all j, and∑

j bj = 1). Let X be the given alignment, consisting of L columns (sites) and
n rows (one for each of n species), with the ith column denoted Xi (1 ≤ i ≤ L).

Each phylogenetic model ψj , in turn, consists of several components. For
our purposes, a phylogenetic model ψj = (Qj ,πj , τ j ,βj) is a four-tuple con-
sisting of a substitution rate matrix Qj , a vector of background (or equilib-
rium) frequencies πj , a binary tree τ j , and a set of branch lengths βj . The
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model is defined with respect to an alphabet Σ (e.g., Σ = {A,C,G,T}) whose
size is denoted d. Generally, Qj has dimension d × d and π has dimension d
(but see example 3). The tree τ j has n leaves, corresponding to n present-day
taxa. The elements of βj are associated with the branches (edges) of the tree.
It is assumed that all phylogenetic models in ψ are defined with respect to
the same alphabet and number of species.

The probability that a column Xi is emitted by state sj is simply the prob-
ability of Xi under the corresponding phylogenetic model, P (Xi|ψj). This
quantity can be computed efficiently by a recursive dynamic programming
algorithm known as Felsenstein’s “pruning” algorithm [7]. Felsenstein’s algo-
rithm requires conditional probabilities of substitution for all bases a, b ∈ Σ
and branch lengths t ∈ βj . The probability of substitution of a base b for
a base a along a branch of length t, denoted P (b|a, t,ψj), is based on a
continuous-time Markov model of substitution, defined by the rate matrix Qj .
In particular, for any given non-negative value t, the conditional probabilities
P (b|a, t,ψj) for all a, b ∈ Σ are given by the d× d matrix Pj(t) = exp(Qjt),

where exp(Qjt) =
∑∞

k=0

(Qjt)k

k! [27]. Qj can be parameterized in various more
or less parsimonious ways [50]. For most of this chapter, we will assume the
parameterization corresponding to the “HKY” model [12], which implies that
Qj has the form

Qj =


− πC,j κjπG,j πT,j

πA,j − πG,j κjπT,j

κjπA,j πC,j − πT,j

πA,j κjπC,j πG,j −

 , (1)

where πj = (πA,j , πC,j , πG,j , πT,j), κj represents the transition/transversion
rate ratio for model ψj , and the − symbols indicate quantities required to
make each row sum to zero.

A “path” through the phylo-HMM is a sequence of states, φ = (φ1, . . . , φL),
such that φi ∈ {1, . . . ,M} for 1 ≤ i ≤ L. The joint probability of a path and
an alignment is2

P (φ,X|θ) = bφ1P (X1|ψφ1
)

L∏
i=2

aφi−1,φiP (Xi|ψφi
). (2)

The likelihood is given by the sum over all paths, P (X|θ) =
∑

φ P (φ,X|θ),
and the maximum-likelihood path is φ̂ = arg maxφ P (φ,X|θ). These quanti-
ties can be computed efficiently using two closely related dynamic-program-
ming algorithms known as the “forward” and Viterbi algorithms, respectively.
The posterior probability that observation Xi was produced by state sj , de-
noted P (φi = j|X,θ), can be computed for all i and j by combining the for-
ward algorithm with a complementary “backward” algorithm, in a “forward-
backward” procedure. Details can be found in [6].
2 For simplicity, transitions to an “end” state are omitted here.
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Fig. 2. (A) A 4-state phylo-HMM for gene finding. States s1, s2, and s3 represent
the three codon positions and state s4 represents noncoding sites. The associated
phylogenetic models ψ1, . . . ,ψ4 capture characteristic properties of the different
types of sites—e.g., the higher average rate of substitution, and the greater transi-
tion/transversion ratio, in noncoding and 3rd-codon-position sites than in 1st- and
2nd-codon-position sites. (B) The eight mammals and phylogeny assumed for the
simulation, with branch lengths drawn in the proportions of the noncoding model
(ψ4). Subsets of species were selected to maximize the sum of the branch lengths of
the induced subtree—e.g., rat and dog for n = 2, and rat, dog, and cow for n = 3.

Example 1. A toy gene finder
This example is meant to demonstrate, in principle, how a phylo-HMM can

be used for gene finding. Consider a simple 4-state phylo-HMM, with states
for the three codon positions and noncoding sites (Fig. 2A). The problem is to
identify the genes in a synthetic data set based on this model, using nothing
but the aligned sequence data and the model (this is a multiple-sequence
version of the ab initio gene prediction problem). For simplicity, we assume
the model parameters θ are given, along with the data set X. In practice,
the parameters have been set to reasonable values for a phylogeny of n = 8
mammals (Fig. 2B)3, and the data set has been generated according to these
values. The state path was recorded during the generation of the data, so that
it could be used to evaluate the accuracy of predictions. The synthetic data
set consists of L = 100, 000 sites and 74 genes.

The Viterbi algorithm can be used for prediction of genes in this data
set in a straightforward way. For every site i (1 ≤ i ≤ L) and state j (1 ≤
j ≤ M), the emission probability P (Xi|ψj) is computed using Felsenstein’s
algorithm. These L×M values, together with the state-transition probabilities
A and initial-state probabilities b, are sufficient to define the joint probability
P (φ,X|ψ) for any path φ, and can be simply plugged into the standard

3 Parameter estimates from [44] were used for the phylogenetic models, and the
state-transition probabilities were approximately based on estimates from [43]
(the probability from s4 to s1 was inflated so that genes would not be too sparse).
A uniform distribution was assumed for initial-state probabilities.
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Fig. 3. Nucleotide-level sensitivity and specificity for the phylo- and non-phylo-
HMMs on the simulated data set of example 1. Results are shown for n = 1, . . . , 8
species.

Viterbi algorithm to obtain a maximum-likelihood path, φ̂. This predicted
path, in turn, defines a set of predicted genes.

To evaluate the effect on prediction accuracy of the number of species
in the data set, subsets of n = 1, . . . , 8 sequences were selected from the
full alignment (Fig. 2B), and a separate set of predictions was produced for
each subset. Predictions were also produced with an alternative model, in
which emission probabilities were based on the assumption that all characters
in a column were independently drawn from the background (equilibrium)
distribution of each state—in other words, the correlation structure implied
by the phylogeny was ignored. This model, which will be called the “non-
phylo-HMM,” allows the importance of the phylogeny in the phylo-HMM to
be assessed.

The nucleotide-level sensitivity (portion correctly predicted of sites actu-
ally in genes) and specificity (portion correct of sites predicted to be in genes)
for both models are shown in Fig. 3, as the number of species increases from
n = 1 to n = 8. The two models are identical for n = 1 (where there is no phy-
logeny to consider), but as the number of species increases from n = 2, . . . , 8,
the performance of the phylo-HMM rapidly improves, with about 98% sensi-
tivity and specificity achieved by n = 2, and 99% sensitivity and specificity
achieved by n = 5. The non-phylo-HMM, on the other hand, appears to
improve slightly then decline, in both sensitivity and specificity.4 The phylo-
HMM is able to capitalize on differences in branch lengths and substitution
4 It might be expected that the prediction accuracy of the non-phylo-HMM would

simple fail to improve as rapidly as that of the phylo-HMM, rather than declin-
ing. The reason for the decline seems to be that the erroneous assumption of
independence causes random fluctuations in base composition to appear more
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patterns, while the non-phylo-HMM has to rely completely on more subtle
differences in base composition.

This example is obviously a gross simplification of the real gene prediction
problem: here, the model used for prediction exactly matches the model used
to generate the data, while in the real problem, the model for prediction
tends to fit the data in a much more approximate way (see Discussion). Even
if slightly contrived, however, this example should help to illustrate how the
information encoded in substitution rates and patterns can be exploited in
problems of segmentation, such as gene prediction. ut

Example 2. Identification of highly conserved regions
Our second example is concerned with a phylo-HMM in which states cor-

respond to “rate categories”—classes of sites assumed to differ only in overall
rate of substitution—rather than “functional categories,” as in the previous
example. The problem is to identify highly conserved genomic regions in a
set of multiply aligned sequences. Such regions are likely to be functionally
important, and hence, their identification has become a subject of consider-
able interest in comparative genomics; see Margulies et al. [30] for a recent
review and a comprehensive discussion. In this example, we will use a phylo-
HMM to identify conserved regions in a subset of the data set analyzed by
Margulies et al. It will be shown that a phylo-HMM can be used to obtain
results comparable to theirs, and has certain potential advantages over their
methods.

A phylo-HMM is assumed like the one proposed by Felsenstein and
Churchill [8], with k states corresponding to k rate categories, and state tran-
sitions defined by a single “autocorrelation” parameter λ (Fig. 4; a similar
model, but with a more complex parameterization of transition probabilities,
was proposed by Yang [52]). Regions of the alignment that are likely to have
been generated by the “slowest” rate categories will be considered putative
“Multi-species Conserved Sequences” (MCSs) [30]. Specifically, we will look
at sites i for which the posterior probability P (φi = 1|X,θ) is high, assuming
state s1 has the smallest rate constant. Posterior probabilities will be com-
puted using the forward-backward algorithm. As in example 1, the L × k
table of emission probabilities—i.e., P (Xi|ψj) for every site i (1 ≤ i ≤ L)
and state j (1 ≤ j ≤ k)—together with the state-transition and initial-state
probabilities (parameters A and b of the phylo-HMM), can be plugged into
the standard forward-backward algorithm for HMMs. In other words, once the
emission probabilities are computed, the phylogenetic models can be ignored,
and the phylo-HMM can be treated like an ordinary HMM. Note that infer-
ences about the evolutionary rate at each site could alternatively be based on
the Viterbi path. We have opted to use posterior probabilities instead, partly
for illustration, and partly because they can be conveniently interpreted as a
continuous-valued “conservation score” that can be plotted along the genome

significant than they really are. These fluctuations are “explained” by changes in
state, resulting in errors in the inferred path and a decline in accuracy.
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Fig. 4. State-transition diagram for the autocorrelated rate-variation model of
Felsenstein and Churchill [8], with k = 3 rate categories and a uniform stationary
distribution. The autocorrelation parameter λ defines all transition probabilities,
as shown. It takes values between 0 and 1, and describes the degree to which the
evolutionary rates at adjacent sites tend to be similar. The values r1, r2, and r3

are applied as scaling constants to the branch lengths of a phylogenetic model; all
parameters other than branch lengths are left unchanged. In our case, these “rate
constants,” as well as λ, are estimated (approximately) from the data (see [42]).

(see below). With this model, the posterior probabilities also tend to be more
robust than the Viterbi path, which is highly sensitive to λ.

The data set consists of about 1.8 Mb of human sequence from chromo-
some 7 and homologous sequence from 8 other eutherian mammals [46] (we
consider only the 9 mammals of the 12 species analyzed in [30]). The species
and phylogeny are as shown in Fig. 2B, except that in this case, chimp is also
included, and appears in the phylogeny as a sister taxon to human. Assum-
ing the HKY substitution model and k = 10 states, we fitted a phylo-HMM
to this alignment, obtaining an estimate of λ̂ = 0.94. Using these parameter
estimates, we then computed the posterior probability of each state at each
site. The posterior probabilities for s1 in a selected region of the alignment are
shown in Fig. 5, along with the conservation scores developed by Margulies et
al. The known exons in this region all coincide with regions of high posterior
probability, as do several conserved intronic features identified by Margulies
et al. [30].

A detailed comparison of results is not possible here, but we note that the
posterior probabilities based on the phylo-HMM are qualitatively very simi-
lar to the binomial- and parsimony-based conservation scores of Margulies et
al. [30]. In addition, the phylo-HMM may have certain advantages as a frame-
work for addressing this problem. For example, it requires no sliding window
of fixed size, and as a result, is capable of identifying both very short highly
conserved sequences, and long not-so-conserved sequences. In addition, it can
be used with any phylogenetic model, including, e.g., ones that allow for non-
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Fig. 5. A screen shot from the UCSC Genome Browser [24] showing a selected
region of the data set of example 2, including several exons of the MET gene (black
boxes at top). The binomial-based (light gray) and parsimony-based (medium gray)
conservation scores of Margulies et al. [30] are shown as tracks in the browser, as
are the posterior probabilities (×1000) of state s1 in the phylo-HMM (dark gray).
Plots similar to this one, showing phylo-HMM-based conservation scores across the
whole human genome, can be viewed online at http://genome.ucsc.edu.

homogeneities in the substitution process or context-dependent substitution
(see example 3); it extends naturally to the case in which different functional
categories of sites, as well as rate categories, are considered [42]; and it could
be adapted to model properties such as the length distributions of MCSs (e.g.,
using techniques from gene finding). ut

3 Higher Order Markov Models for Emissions

It is common with (single-sequence) gene-finding HMMs to condition the emis-
sion probability of each observation xi on the observations that immediately
precede it in the sequence, e.g., xi−2 and xi−1. By taking into consideration
the “context” for each observation, emission probabilities become more in-
formative, and the HMM can discriminate more effectively between different
classes of observations. For example, in a 3rd-codon-position state, the emis-
sion of a base xi = “A” might have a fairly high probability if the previous
two bases are xi−2 = “G” and xi−1 =“A” (GAA = Glu), but should have
zero probability if the previous two bases are xi−2 = “T” and xi−1 = “A”
(TAA = Stop).

Considering the N observations preceding each xi corresponds to using
an Nth order Markov model for emissions. (Note that such a model does not
imply an Nth order Markov chain for state transitions; indeed, things are
kept simpler, and the model remains mathematically valid, if state transitions
continue to be described by a 1st order Markov chain.) An Nth order model for
emissions is typically parameterized in terms of (N +1)-tuples of observations,
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and conditional probabilities are computed as

P (xi|xi−N , . . . , xi−1) =
P (xi−N , . . . , xi−1, xi)∑
y P (xi−N , . . . , xi−1, y)

, (3)

with the numerator being the probability of the (N +1)-tuple (xi−N , . . . , xi),
and the sum in the denominator being over all possible observations y that
could appear in place of xi.

An Nth order Markov model for emissions can be incorporated into a
phylo-HMM in essentially the same way. In this case, a whole alignment col-
umn Xi is considered in place of each single base xi. Because we will primar-
ily be concerned below with tuple size, let us also redefine N and speak of
(N − 1)st order Markov models and N -tuples of observations, instead of Nth
order Markov models and (N +1)-tuples of observations. With these changes,
equation 3 can be rewritten as

P (Xi|Xi−N+1, . . . ,Xi−1) =
P (Xi−N+1, . . . ,Xi−1,Xi)∑
Y P (Xi−N+1, . . . ,Xi−1,Y)

. (4)

Notice that the sum in the denominator is now over all possible alignment
columns Y, and has dn terms, where d is the size of the alphabet (d = |Σ|)
and n is the number of rows (species) in the alignment. To compute the
quantity in the numerator of equation 4, we replace an ordinary phylogenetic
model, defined with respect to an alphabet Σ, with what we will call an “Nth
order” phylogenetic model, defined with respect to ΣN , the alphabet of N -
tuples of characters from Σ.5 (The new rate matrix and vector of equilibrium
frequencies will have dimensions dN × dN and dN , respectively.) The N -tuple
of columns in the numerator is reinterpreted as a column of N -tuples, and
its probability is computed with Felsenstein’s pruning algorithm, using the
Nth order phylogenetic model. The sum in the denominator can no longer be
evaluated directly, but it can be computed efficiently by dynamic program-
ming, using a slight adaptation of Felsenstein’s algorithm [44, 42]. This new
algorithm differs from the original only in its initialization strategy. Thus,
the conditional probability P (Xi|Xi−N+1, . . . ,Xi−1) can be computed with
an Nth order phylogenetic model and two passes through Felsenstein’s algo-
rithm, one for the numerator and one for the denominator of equation 4. This
procedure is feasible only for small N , so far for N ≤ 3.
5 Note that the “order” of a phylogenetic model is given by the size of the tuples

considered, and is not equal to the order of the Markov model for emissions. Here,
Nth order phylogenetic models are used to define an (N − 1)st order Markov
model.
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Once the conditional emission probabilities of equation 4 are available,
they can be substituted directly into equation 2. For example, in the case of
N = 3, equation 2 can be rewritten as

P (φ,X|θ) = bφ1P (X1|ψφ1
)aφ1,φ2P (X2|X1,ψφ2

)

×
L∏

i=3

aφi−1,φi
P (Xi|Xi−2,Xi−1,ψφi

). (5)

The forward, Viterbi, and forward-backward algorithms are unaffected by the
use of a higher-order Markov model for emissions.

It is important to note that this strategy for incorporating higher order
Markov models into a phylo-HMM allows “context” to be considered in the
nucleotide substitution process, as well as in the equilibrium frequencies of
bases. Nth order phylogenetic models describe the joint substitution proba-
bilities of N -tuples of nucleotides. As a result, the conditional probabilities of
equation 4 may reflect various important context- or neighbor-dependencies in
the substitution process, such as the tendency for synonymous substitutions to
occur at a higher rate than nonsynonymous substitutions in coding regions,
or the tendency for a high rate of C→T transitions in CpG dinucleotides.
Equations 4 and 5, as will be shown in example 3, essentially provide a way of
“stringing together” context-dependent phylogenetic models, so that context
dependencies can be considered between every adjacent pair of columns in an
alignment.

Example 3. Modeling context-dependent substitution
In this example, we will look at how goodness of fit is affected by increasing

the order N of a phylogenetic model, and by allowing for Markov dependence
between sites (as in equation 5). We will consider the goodness of fit of var-
ious independent-site (N = 1) and context-dependent (N > 1) phylogenetic
models, with respect to about 160,000 sites in aligned noncoding DNA from 9
mammalian species. The results presented here are taken from [44]. (The full
paper should be consulted for complete details.)

For convenience, let us call the class of phylo-HMMs described by equa-
tions 4 and 5 “Markov-dependent” models, because they allow for Markov
dependence of columns in the alignment. As will be seen below, these models
are actually only approximations of models that properly allow for Markov
dependence across sites in the substitution process. Regardless, these Markov-
dependent models are valid probability models (the probabilities of all align-
ments of a given size sum to one), so it is fair to evaluate goodness of fit
based on model likelihoods. The way in which these models are approximate
is discussed in detail in Section 7 and the Appendix.

In this example, there are no functional or rate categories to consider.
We assume that the HMM has only a single state, so nothing is actually
“hidden”—only one path is possible, and the model reduces to a Markov
chain.
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As a result, Equation 5 becomes

P (φ,X|θ) = P (X1|ψ1)P (X2|X1,ψ1)
L∏

i=3

P (Xi|Xi−2,Xi−1,ψ1). (6)

This simplification allows us to focus on the impact of higher-order Markov
models, and to avoid issues related to the HMM structure. Keep in mind,
however, that higher-order Markov models can be used with a nontrivial HMM
as easily as with this trivial one.

In [44], various models were fitted to the data set of 160,000 noncod-
ing sites, and their likelihoods were compared. The models differed in the
type of phylogenetic model used (its order N and the parameterization of its
rate matrix), and whether N -tuples of columns were assumed independent or
Markov-dependence was allowed. We will focus here on four types of phyloge-
netic models: the HKY and UNR 1st order models, the U2S 2nd order model,
and the U3S 3rd order model. The HKY model, introduced in Section 2, is
treated as a baseline. The UNR, or “unrestricted,” model has a separate free
parameter for every nondiagonal element of the rate matrix, and is the most
general model possible for single nucleotide substitution (see, e.g., [51]). The
U2S and U3S models are fully general 2nd and 3rd order models, respectively,
except that they assume strand symmetry (so that, e.g., the rate at which
AG changes to AC is the same as the rate at which CT changes to GT),
and like most codon models [11], they prohibit instantaneous substitutions
of more than one nucleotide. They have 48 and 288 rate-matrix parameters,
respectively. We will consider two cases for each phylogenetic model: an “in-
dependent tuples” case, in which the data set was partitioned into N -tuples of
columns, which were considered independent; and a Markov-dependent case,
in which N -tuples were allowed to overlap, and likelihoods were computed
with equations 4 and 6. Note that, with 1st order models, the independent-
tuples and Markov-dependent cases are identical.

Fig. 6A shows the log likelihoods of the UNR, U2S, and U3S phylogenetic
models, with and without Markov dependence, relative to the log likelihood
of the HKY model. Even when N -tuples are considered independent, context-
dependent models (here, U2S and U3S) produce a striking improvement in
likelihood—a far larger increase than is obtained by replacing even a fairly
parsimonious 1st order model (HKY) with a fully general one (UNR). When
Markov dependence between sites is introduced, another large improvement
occurs. This improvement appears to be largely a consequence of the fact
that, with Markov dependence, every boundary between adjacent sites is con-
sidered, while with independent tuples, only every other (U2S) or every third
(U3S) such boundary is considered. Notice that, even with Markov depen-
dence, goodness of fit improves significantly when a 2nd order model (U2S)
is replaced with a 3rd order model (U3S). This is probably partly because
of direct context effects that extend beyond the nearest neighbors of each
base, and partly because the 3rd order model does a better job than the
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Fig. 6. (A) Log likelihoods of the UNR, U2S, and U3S phylogenetic models, with
and without Markov dependence between sites, relative to the log likelihood of the
HKY model. Results are for an alignment of 9 species and approximately 160,000
sites of noncoding data, as described in [44]. (B) Parameter estimates of substitution
rates for the U3S model vs. estimates based on counts from aligned human genes and
pseudogenes [15]. The rates cluster into three groups: transversions, transitions, and
CpG transitions (CpG transversions cluster with non-CpG transitions). In general,
the two sets of estimates agree fairly well, considering the differences in methods
and data sets (see [44] for a detailed discussion).

2nd order model of accounting for indirect context effects—i.e., it provides a
better approximation of a proper process-based model of context-dependent
substitution (see below).

The observed improvements remain essentially unchanged when a mea-
surement is used that considers the different numbers of parameters in the
models and the size of the data set (the Bayesian information criterion) and
in cross-validation experiments [44]. Thus, the apparent improvement in good-
ness of fit is not an artifact of the number of parameters in the models.

The U2S and U3S models allow context-dependent substitution rates to
be estimated with full consideration of the phylogeny and allowance for mul-
tiple substitutions per site, unlike simpler “counting” methods for estimating
context-dependent substitution rates [15]. Parameter estimates indicate wide
variation in rates, spanning a 200-fold range, and in particular, pronounced
CpG effects (Fig. 6B).

Coding regions can be modeled using a simple 3-state phylo-HMM, with a
separate 3rd order phylogenetic model for each codon position. Thus, the state
corresponding to the 3rd codon position considers columns of aligned codons,
like an ordinary codon model, but the other two states consider columns of
nucleotide triples that are out of frame, and consequently, these states can
capture context effects that cross codon boundaries. Such a model improves



14 Adam Siepel and David Haussler

substantially on ordinary codon models, indicating that context effects that
cross codon boundaries are important [44] (see also [39]). ut

4 Phylogenetic Models, HMMs, and Phylo-HMMs as
Graphical Models

In recent years, probabilistic models originally developed in various research
communities have been unified under the heading of “graphical models.”
Graphical models provide an intuitively appealing framework for construct-
ing and understanding probabilistic models, and at the same time, allow for
rigorous analysis, in very general statistical and graph-theoretic terms, of al-
gorithms for inference and learning. Many familiar classes of models fit natu-
rally into the graphical models framework, including HMMs and phylogenetic
models, as well as mixture models and hierarchical Bayesian models. A phylo-
HMM can be seen as a graphical model whose structure is a hybrid of the
graphical models for HMMs and phylogenetic models (Fig. 7). Viewing phylo-
HMMs as graphical models helps to provide insight about why they permit
efficient inference, and why this property may be sacrificed when assumptions
such as site independence are relaxed. Our discussion of graphical models will
necessarily be brief; other tutorials should be consulted for a more complete
introduction to the field (e.g., [5, 13, 22]).

In graphical models, random variables are represented by nodes in a graph,
and dependencies between variables are represented by edges (Fig. 7)6. Let X
be the set of random variables represented by a graph with nodes (vertices) V
and edges E, such that Xv is the variable associated with v ∈ V . In addition,
let XC be the subset of variables associated with C ⊆ V , and let lower-case
letters indicate (sets of) instances of variables, e.g., xv, xC , and x. Graph-
ical models can be defined in terms of directed or undirected graphs, and
accordingly, are called directed or undirected models; here we will focus on
the directed case, which for our purposes is simpler to describe. In a directed
model, the edges of the graph correspond to local conditional probability dis-
tributions, and the joint probability of a set of instances x is a product of the
conditional probabilities of nodes given their parents,

P (x) =
∏
v∈V

P (xv|xPv ), (7)

where Pv denotes the set of parents of node v and P (xv|xPv
) is the local

conditional probability associated with xv. It should not be too hard to see,
looking at Fig. 7, that equation 7 generalizes the joint probability of a sequence
and a particular path in the case of an HMM, and the joint probability of an
6 The brief introduction to graphical models provided here roughly follows the more

detailed tutorial of Jordan and Weiss [22].
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Fig. 7. Graphical model representations of (A) an HMM, (B) a phylogenetic model,
and (C) a phylo-HMM. In each case, nodes correspond one-to-one with random
variables; shaded nodes represent observed variables and unshaded nodes repre-
sent unobserved (latent) variables. These are directed graphical models, based on
directed acyclic graphs (sometimes called Bayesian networks). The edges between
nodes correspond to local conditional probability distributions, and can be thought
of as implying dependencies between variables. (More precisely, the set of all edges
defines a set of conditional independence assertions about the variables.) In (A),
each Xi represents an observation in the sequence and each φi represents a state in
the path. The conditional probability distribution for observation Xi given state φi

is incorporated in the directed edge from φi to Xi, and the conditional probability
distribution for state φi given state φi−1 (i.e., of a transition from φi−1 to φi) is
incorporated in the directed edge from φi−1 to φi. In (B), each set of nodes collec-
tively labeled Xi represents an alignment column, and each set collectively labeled
Yi represents a set of ancestral bases. The conditional probabilities of nucleotide
substitutions (based on the continuous-time Markov model) are incorporated in the
directed edges from each parent node to its two children. In (C), conventions from
(A) and (B) are combined.

alignment and a particular set of ancestral bases in the case of a phylogenetic
model.

The general problem of probabilistic inference is to compute marginal
probabilities from this joint distribution—probabilities of the form P (xU ) =∑

xW
P (xU , xW ), where (U,W ) is a partitioning of V . The likelihood is an

example of such a marginal probability, with xU being the observed data and
XW being the set of latent variables. When the likelihood of an HMM is com-
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Fig. 8. (A) A directed graphical model whose nodes form an arbitrary tree. The
marginal probability of an observed value of X5 is desired. (B) The intermediate
values of the elimination algorithm can be seen as “messages” that are passed from
one node to another in the direction of X5. (C) In the belief-propagation algorithm,
all possible messages are generated simultaneously; the marginal probability of each
node is a product of the incoming messages. (Based on Figure 1 of Jordan and Weiss
[22].)

puted, xU is the (observed) sequence and XW is the (latent) path. With a
phylogenetic model, the procedure is applied independently at each site, and
xU is an (observed) alignment column and XW is a set of (latent) ancestral
bases. Conditional probabilities of interest, such as the posterior probabilities
of example 2, can be computed as quotients of marginal probabilities. For in-
stance, suppose xU is the observed data and Xw (w ∈ W ) is a latent variable;
then P (xw|xU ) = P (xU∪{w})

P (xU ) .
Marginal probabilities can always be computed from the complete joint

distribution by brute-force summation7. The problem is to keep these compu-
tations tractable as the number of random variables becomes large. It turns
out that if a directed graphical model is a tree (or set of trees), as in Fig.
7A&B and Fig. 8, meaning that every node has at most one parent, then
exact inference can be accomplished efficiently by dynamic programming. (As
we will see, efficient exact inference is also possible in certain cases in which
the directed graph is not a tree.)

The basic algorithm for computing marginal probabilities is known as
“elimination,” and is most easily described by example. Consider the graph of
Fig. 8A, with X = (X1, X2, X3, X4, X5) and edges as depicted. The elimina-
tion algorithm takes advantage of the commutativity of sums and products,
and reuse of intermediate computations, to reduce the computational com-
plexity of a marginal summation.
7 This discussion is restricted to discrete random variables, although it extends

directly to the continuous case.
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Algebraically, the algorithm proceeds as follows,

P (x5) =
X

x1,x2,x3,x4

P (x1, x2, x3, x4, x5)

=
X
x1

X
x2

X
x3

X
x4

P (x1)P (x2|x4)P (x3|x4)P (x4|x1)P (x5|x4)

=
X
x4

P (x5|x4)
X
x3

P (x3|x4)
X
x2

P (x2|x4)
X
x1

P (x1)P (x4|x1)

=
X
x4

P (x5|x4)
X
x3

P (x3|x4)
X
x2

P (x2|x4)m14(x4)

=
X
x4

P (x5|x4)
X
x3

P (x3|x4)m24(x4)m14(x4)

=
X
x4

P (x5|x4)m34(x4)m24(x4)m14(x4)

= m45(x5), (8)

where the terms of the form mij(xj) denote the results of intermediate
(nested) summations (each mij(xj) is the result of a sum over xi and is a
function of xj). The algorithm can be described in graph-theoretic terms as
a procedure that eliminates one node at a time from the graph until only the
node corresponding to the desired marginal probability remains. From the al-
gebraic description, many readers will recognize the similarity to Felsenstein’s
pruning algorithm [7]. Felsenstein’s algorithm, it turns out, is an instance of
the elimination algorithm—one of the earliest instances to be discovered. The
forward algorithm is another instance of the elimination algorithm, as is the
combined forward/Felsenstein algorithm that we used above to compute the
likelihood of a phylo-HMM. The Viterbi algorithm is closely related to the
elimination algorithm; it can be derived by noting that the “max” operator
commutes with products, just as the summation operator does. Note that the
elimination algorithm depends on a good “elimination ordering.” An optimal
ordering is difficult to find for arbitrary graphs, but can be determined eas-
ily for specific classes of models (as with HMMs, phylogenetic models, and
phylo-HMMs).

Often, not just one, but many marginal probabilities are desired. The elimi-
nation algorithm can be extended to compute the marginal probabilities for all
nodes in two passes across the graph, with conditional probabilities computed
in a forward pass and marginals in a backward pass [29]. Typically, this proce-
dure is described as “belief propagation” [37], with node elimination replaced
by a “message-passing” metaphor (Fig. 8B&C). The belief-propagation (also
called “sum-product”) algorithm generalizes the forward-backward algorithm
for HMMs and algorithms for phylogenetic models that compute marginal
probabilities of ancestral bases [26].

We have focused on directed models, but undirected models are similar.
Moreover, the undirected case turns out to be, in a sense, the more general
one with respect to inference. In undirected models, the graph is viewed in
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terms of cliques (maximal fully connected subgraphs) and a potential function
(essentially, an unnormalized probability distribution) is associated with each
clique. The joint probability of all variables (equation 7) is now a product
over cliques, with a normalizing constant to ensure that

∑
x P (x) = 1. Di-

rected graphs can be converted to undirected graphs by a process known as
“moralization,” wherein the arrowheads of the edges are removed and new
edges are added between all parents of each node (the resulting graph is
called the “moral” graph, because it requires that all parents are “married”).
By explicitly creating a clique that includes each node and all of its parents,
moralization ensures that all dependencies implied by the local conditional
distributions of the directed graph are captured in the undirected graph.

The moral graph for a directed tree is simply an undirected tree (i.e., no
new edges are added), and the belief propagation algorithm for this undirected
tree is the same as that illustrated in Fig. 8. For undirected graphs that con-
tain cycles, a generalization of the belief propagation algorithm, called the
“junction-tree” algorithm, can be used. The junction-tree algorithm oper-
ates on a tree of cliques, rather than of nodes, and computes (unnormalized)
marginal probabilities for cliques (marginal probabilities of nodes can be ob-
tained afterwards). It requires an additional step, called “triangulation,” in
which new edges are added to the graph to represent certain implicit depen-
dencies between nodes. A complete introduction to the junction-tree algorithm
is not possible here (more details can be found in [5] and [22]). The key point
for our purposes is that the computational complexity of the algorithm is ex-
ponential in the size of the largest clique. Thus, graphs with cycles can still be
handled efficiently if their clique size is constrained to be small. It is for this
reason that phylo-HMMs permit efficient inference; their (triangulated) moral
graphs have cycles, but the maximum clique size turns out to be three8. When
clique size is large, exact inference is intractable, and approximate methods
are required. Some of the approximate methods in use include Monte Carlo
algorithms and variational methods, which include mean field methods and
“loopy” belief propagation (approximate methods are partially surveyed in
[22]; see also [36, 53, 48, 49]).

With phylo-HMMs, the junction-tree algorithm allows computation not
only of the posterior probability that each site was emitted by each state
(as in example 2), but also of marginal posterior probabilities of ancestral
bases considering all paths. In addition, the algorithm can be used to com-
pute posterior expected values of interest, such as the expected number of
substitutions per site, or the expected numbers of each type of substitution
(A→C, A→G, etc.) along each branch of the tree (the sufficient statistics for
parameter estimation by expectation maximization [9, 44]). Using the junc-
tion tree algorithm in the expectation step of an expectation-maximization
8 In the case of a phylo-HMM, the parents of each node are already connected

(Fig. 7C), so moralization amounts simply to removing the arrowheads from all
edges in the graph. Moreover, it turns out that this graph is already triangulated.
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Fig. 9. (A) The lattice that results when context-dependent substitution is incor-
porated into a phylogenetic model, shown as an undirected graphical model. For
clarity, only a single leaf node is shown for each site, with a chain of ancestral nodes
leading to the root (the phylogeny can be imagined as going into and out of the
page). Each node depends not only on its parent node in the phylogeny, but also on
its parent’s left and right neighbors in the alignment. (B) A version of the graph
in (A) with intermediate nodes added to the branches of the tree. As more and
more nodes are added, the branch lengths between them approach zero, and the
model approaches a true “process-based” model of context-dependent substitution.
In both (A) and (B), the untriangulated graph is shown; additional edges appear
during triangulation, leading to prohibitively large clique sizes.

algorithm, it is possible to train a phylo-HMM (including its phylogenetic
models) completely from unlabeled data. This technique could be used, for
example, for de novo detection of binding-site motifs in aligned sequences.

Once the effect of cycles in graphical models is understood, it becomes
clear that efficient exact inference will not be possible with models that ac-
curately describe the process of context-dependent substitution, by allowing
for dependencies between adjacent bases on all branches of the phylogenetic
tree. Fig. 9A illustrates what happens to the graphical structure of a phy-
logenetic model when this kind of proper context-dependence is introduced.
The additional edges in the graph lead to the formation of a kind of lattice of
dependency, reminiscent of the classic Ising model from statistical mechanics
(this case is like a two-dimensional Ising model, except that the branching
structure of the phylogeny creates a branching structure of two-dimensional
sheets, not shown in Fig. 9A). Unless the size of the lattice is constrained to
be small, models of this kind are well-known to require approximate methods
for inference.

Moreover, for context-dependent substitution to be modeled properly, it
should be integrated into the continuous-time Markov model of substitution,
so that context-effects can propagate indefinitely across sites as substitutions
accumulate along each branch of the phylogeny. This behavior can be approx-
imated by introducing intermediate nodes in the phylogeny, while keeping
total branch lengths constant, as shown in Fig. 9B. As more and more nodes
are introduced, the branch lengths between them will approach zero, and the
model will approach the desired “process-based” model. Exact inference is



20 Adam Siepel and David Haussler

intractable for such models even in the case of two sequences and an unrooted
tree, but Markov chain Monte Carlo (MCMC) methods have been applied in
this special case [20, 38]. The stationary distribution of a related process has
also been studied [2]. Extending such process-based models to full phylogenies
appears difficult, even with MCMC. However, a model without intermediate
nodes (as in Fig. 9A) has been studied by Jojic et al. [21], using variational
methods for approximate inference. Jojic et al. have shown experimentally
that this model can produce significantly higher likelihoods than the U2S ver-
sion of the more approximate Markov-dependent model described in Section 3.

The model of Section 3 essentially works by defining a simple (N − 1)st
order Markov chain of alignment columns (observed variables), while ignoring
the dependencies between the ancestral bases (latent variables) that are asso-
ciated with overlapping N -tuples of columns. As a result, this model has no
reasonable process-based interpretation. Nevertheless, it is a valid probability
model that appears to fit the data well, and it allows for exact inference at
modest computational cost [44]. The Markov-dependent model is compared
to the model of Jojic et al. in more detail in the Appendix.

5 Discussion

Phylogenetic hidden Markov models are probabilistic models that describe
molecular evolution as a combination of two Markov processes—one that op-
erates in the dimension of space (along a genome) and one that operates in
the dimension of time (along the branches of a tree). They combine HMMs
and phylogenetic models, two of the most powerful and widely used classes
of probabilistic models in biological sequence analysis. Phylo-HMMs often fit
aligned DNA sequence data considerably better than models that treat all
sites equally, or that fail to allow for correlations between sites. In addition,
they are useful for identifying regions of interest in aligned sequences, such as
genes or highly conserved regions.

Three examples have been presented to illustrate some of the ways in
which phylo-HMMs may be used, and each one deserves additional comment.
Applying phylo-HMMs to gene prediction (example 1) is a much harder prob-
lem than implied here, for several reasons. First, while coding and noncoding
sites have quite different properties on average, both types of sites are hetero-
geneous mixtures, so that correctly classifying particular sequence segments
can be difficult. For example, protein coding sites show higher average levels
of evolutionary conservation than noncoding sites, but mammalian genomes
do appear to have many islands of conservation in noncoding regions [4, 30],
which can lead to false-positive predictions of exons [43]. Similarly, coding sites
in mammalian genomes exhibit higher average G+C content than do noncod-
ing sites, but base composition varies considerably in both kinds of sites from
one genomic region to another, which can have the effect of confounding gene
prediction software. Second, the gene finding problem ends up being largely



Phylogenetic Hidden Markov Models 21

about identifying the boundaries of exons, as determined by splice sites, and
phylo-HMMs are not necessarily the best tools for detecting these so-called
“signals.” Gene finders are often based on composite models, with special-
ized submodels for signal detection; a similar approach may be required for
phylo-HMMs to be effective in gene prediction. A third problem is that a
straightforward phylo-HMM like that of example 1 induces a geometric distri-
bution of exon lengths, which is known to be incorrect. Some of these problems
have been addressed with a “generalized” phylo-HMM that allows for arbi-
trary length distributions of exons, and also uses different sets of parameters
for regions of different overall G+C content [31]. In other recent work, it has
been shown that the prediction performance of a phylo-HMM-based exon pre-
dictor can be improved significantly by using context-dependent phylogenetic
models, and by explicitly modeling both conserved noncoding regions and nu-
cleotide insertions/deletions [43]. Additional challenges in multi-species gene
prediction are also discussed in [43], stemming from lack of conservation of
exon structure across species, and errors in the multiple alignment.

There are many possible ways of identifying conserved regions (example 2)
and even quite different methods (e.g., ones that do and do not consider the
phylogeny) tend to be fairly concordant in the regions they identify [45, 30].
Perhaps more difficult than proposing a method to identify conserved regions
is confirming that it produces biologically useful results. Limited kinds of
validation can be done computationally, but this is ultimately an experimental
problem, and must be addressed in the laboratory. Most likely, phylo-HMMs
of the kind described in example 2 will not produce dramatically different
results from other methods, but as mentioned above, they provide a flexible
framework in which to address the problem. It should be noted that, while the
original papers introducing phylo-HMMs focused on improving the realism
and goodness of fit of models allowing for rate variation [8, 52], they also
showed that phylo-HMMs could be used to predict the evolutionary rate at
each site.

Modeling context-dependent substitution is an active area of current re-
search, and the Markov-dependent model described here (example 3) repre-
sents only one of several possible approaches to this problem. The approach of
Jojic et al. [21], discussed at the end of Section 4, is another, and we are aware
of work in progress on at least two other, completely different, methods. At
this stage, it remains unclear which models and algorithms for inference will
allow for the best compromise between computational efficiency and goodness
of fit. It is likely that different approaches will turn out to be appropriate for
different purposes.

Space has not allowed for a complete survey of the applications of phylo-
HMMs. In particular, we have not discussed their use in the prediction of
secondary structure [10, 47, 28] or the detection of recombination [19], nor
have we touched on their use in a Bayesian setting [32, 18]. We also have
not discussed the models similar in spirit to phylo-HMMs that have been ap-
plied to the problems of RNA secondary structure prediction [25] and multiple
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alignment [34, 17, 16, 14]. It has been noted [40] that phylo-HMMs themselves
could be used for multiple alignment, in a direct extension of the way pair
HMMs are used for pairwise alignment [6]. Indeed, phylo-HMMs provide a
natural framework for simultaneously addressing the multiple alignment and
gene prediction problems, as has been done in the two-sequence case with pair
HMMs [1, 33]. Another area in which phylo-HMMs may prove useful is ho-
mology searching. In principle, the profile HMMs that are commonly applied
to this problem [6] could be adapted to use phylogenetic models instead of
assuming independence of aligned sequences or relying on ad hoc weighting
schemes.
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Appendix

In this short Appendix, we will examine more closely how the Markov-
dependent model for context-dependent substitution that was presented in
Section 3 (example 3) compares with the graphical models of Section 4. We
will concentrate on the model studied by Jojic et al. [21], which we will refer
to as the “simple-lattice” model, in contrast to the full process-based model
of Fig. 9B. The undirected graph for the simple-lattice model is shown in
Fig. 10A, assuming a very small alignment of n = 3 sequences and L = 3
columns. (The complete graph is shown here, whereas in Fig. 9A only a sub-
graph was shown.) From Fig. 10A, it should be clear that the graph contains
an L× 2 lattice of nodes for each branch of the phylogeny.

The Markov-dependent model of Section 3 is a graphical model insofar as
it is based on a Markov-chain of random variables, but it is quite different
from the simple-lattice model. The Markov-dependent model actually oper-
ates at two levels, as illustrated in Fig. 10B. At one level (top of figure), a
simple Markov chain of alignment columns is assumed, with each column being
treated as an observed random variable. At another level (boxes at bottom of
figure), the conditional probability of each column given the previous column
is computed according to a phylogenetic model for pairs of columns. (Each
of these phylogenetic models is a submodel of the model shown in Fig. 10A.)
When conditional probabilities are computed according to these separate phy-
logenetic models, multiple versions of the random variables for ancestral bases
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Fig. 10. (A) Undirected graph for the “simple-lattice” model of Fig. 9A, for an
alignment of L = 3 sites and n = 3 species. Each node in the phylogeny is repre-
sented by a sequence of three nodes, corresponding to sites 1, 2, and 3, and each
of these nodes is connected not only to its parent but to its parent’s neighbors to
the left and right. The shaded nodes together represent the three columns of the
alignment, X1, X2, and X3, and the unshaded nodes represent the corresponding
sets of ancestral bases, Y1, Y2, and Y3. (B) An interpretation of the Markov-chain
model of Section 3, applied to the same alignment (the case of N = 2 is illustrated).
At one level (top), a Markov chain of alignment columns is assumed. At another
level (bottom, inside boxes), the conditional probability of each column given the
previous column is computed according to a phylogenetic model for pairs of sites.

are effectively introduced (e.g., Y2 and Y′
2 in Fig. 10B). Moreover, these dif-

ferent versions are not required to be consistent. The effect of this modeling
choice is to ignore (indirect) dependencies between latent variables that do
not belong to the same “slice” of N columns, but at the same time, to permit
exact likelihood computations and to capture what are probably the most
important context effects.

By failing to “tie” together the ancestral nodes of these multiple phyloge-
netic models, the Markov-dependent model sacrifices any claim of accurately
representing the process of context-dependent substitution. Nevertheless, it
allows the major consequences of this process to be characterized empirically,
in such a way that valid likelihoods can be extracted, as well as reasonable
approximations of the conditional expectations of key quantities.
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50. S. Whelan, P. Liò, and N. Goldman. Molecular phylogenetics: State-of-the-art
methods for looking into the past. Trends Genet., 17:262–272, 2001.

51. Z. Yang. Estimating the pattern of nucleotide substitution. J. Mol. Evol., 39:105–
111, 1994.

52. Z. Yang. A space-time process model for the evolution of DNA sequences. Ge-
netics, 139:993–1005, 1995.

53. J. Yedidia, W. Freeman, and Y. Weiss. Bethe free energy, Kikuchi approxi-
mations, and belief propagation algorithms. Technical Report TR2001-16, Mit-
subishi Electronic Research Laboratories, 2001.


