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ABSTRACT

A few models have appeared in recent years that consider not only the way substitutions
occur through evolutionary history at each site of a genome, but also the way the process
changes from one site to the next. These models combine phylogenetic models of molecu-
lar evolution, which apply to individual sites, and hidden Markov models, which allow for
changes from site to site. Besides improving the realism of ordinary phylogenetic models,
they are potentially very powerful tools for inference and prediction—for example, for gene
finding or prediction of secondary structure. In this paper, we review progress on combined
phylogenetic and hidden Markov models and present some extensions to previous work.
Our main result is a simple and efficient method for accommodating higher-order states
in the HMM, which allows for context-dependent models of substitution—that is, models
that consider the effects of neighboring bases on the pattern of substitution. We present
experimental results indicating that higher-order states, autocorrelated rates, and multiple
functional categories all lead to significant improvements in the fit of a combined phyloge-
netic and hidden Markov model, with the effect of higher-order states being particularly
pronounced.

Key words: phylogenetic models, hidden Markov models, gene prediction, maximum likelihood,
context-dependent substitution.

1. INTRODUCTION

Since their introduction to bioinformatics about a decade ago (Churchill, 1989; Krogh et al.,
1994b, 1994a), hidden Markov models (HMMs) have become one of the dominant tools in biological

sequence analysis. They are especially important in the areas of gene prediction (Kulp et al., 1996; Burge
and Karlin, 1997; Krogh, 1997) and homology searching (Krogh et al., 1994b; Eddy, 1998; Karplus
et al., 1998), but have been applied to a wide variety of problems (Churchill, 1989; Eddy, 1995; Thorne
et al., 1996). While fundamentally more powerful models, such as stochastic context-free grammars, are
preferable for certain applications (Durbin et al., 1998), HMMs appear in many cases to strike the right
balance between simplicity and expressiveness.
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An important limitation of most HMMs in use today, however, is that they fail to take advantage of
the best available models of sequence evolution. More than three decades of research have produced
probabilistic models of evolution that consider not only the topology of the phylogenetic tree by which
present-day sequences are related, but also the lengths of its branches and the pattern of substitution by
which the sequences have evolved (Edwards and Cavalli-Sforza, 1964; Neyman, 1971; Felsenstein, 1973,
1981; Yang, 1993; Whelan et al., 2001). As phylogenetic models of molecular evolution and HMMs are
both explicitly probabilistic (and indeed, are applied using very similar algorithms), it would seem that the
best aspects of both might be incorporated into a single framework.
HMMs generally work along the length of a sequence, mostly ignoring the evolutionary process at each

site; phylogenetic models work across sequences, more or less ignoring changes along their length. To
borrow a notion from Yang (1995), HMMs (as applied to biological sequences) operate in the dimension
of space, and phylogenetic models in the dimension of time. Because they are orthogonal in this way, the
two types of models turn out to be fairly easy to combine. Combined phylogenetic and hidden Markov
models were derived independently by Felsenstein and Churchill (1996) and Yang (1995) to allow for
autocorrelation of evolutionary rates at different sites, with the goal of improving the realism of models
of evolution and the accuracy of phylogenetic inferences. Subsequently, Thorne, Goldman, Jones, and Lío
(Thorne et al., 1996; Goldman et al., 1996; Liò et al., 1998) applied a very similar type of combined model
to the problem of secondary structure prediction, recognizing that the basic paradigm could be useful for
various types of comparative sequence analysis. More recently, Husmeier and Wright (2001) have applied
combined phylogenetic HMMs to the problem of detecting recombination events. (Somewhat different
combinations of HMMs and phylogeny have also been applied to the problems of multiple alignment
[Holmes and Bruno, 2001] and combined tree-building/multiple alignment [Mitchison, 1999]). Despite
these efforts, however, combined models remain little used, and have yet to be applied to many suitable
problems.
We believe that the combined phylogenetic and hidden Markov model could become an important

general-purpose tool in the bioinformatician’s arsenal. These combined models, in a sense, are the natural
extension of HMMs for the comparative genomics era: they allow the information contained in multiple,
aligned sequences to be brought to bear on the problems of spatial discrimination for which HMMs are
so effective, and in doing so they remain purely probabilistic, interpretable with efficient algorithms, and
reasonably faithful to the underlying biology. We think it especially important that they explicitly use the
phylogeny—which not only represents the evolutionary relationships of the sequences in question, but, as
Goldman et al. (1996) have pointed out, also defines their correlation structure.
In this paper, we review and extend previous work on combined phylogenetic and hidden Markov

models. The paper begins with an overview of phylogenetic models, including extensions that allow rate
variation among sites. Next, we review HMMs designed to allow autocorrelation of evolutionary rate,
and then present a simple extension that accommodates functional categories as well as rate categories.
Following this, we introduce a simple and efficient method for computing the emission probabilities of
higher-order states. This method allows for neighbor- or context-dependent models of base substitution,
which consider the N bases preceding each base and are capable of capturing the dependence of substitution
patterns on neighboring bases (Blake et al., 1992; Morton et al., 1997). Finally, we present the results of
a small experimental study indicating that higher-order states, autocorrelated rates, and multiple functional
categories all dramatically improve the fit of the model, and the improvements are roughly additive. The
effect of higher-order states (context dependence) is particularly pronounced. We have focused here on
the question of how best to improve the fit of a combined model; applying such a model to problems of
inference and prediction remains a subject for future work.

2. METHODS

We assume a correct multiple alignment of n sequences of length L, with one sequence for each of n
taxa. We further assume that the taxa are related by a phylogenetic tree of known topology, and we begin
with standard simplifying assumptions about the substitution process: it is homogeneous throughout the
tree, and it acts independently and identically at different columns of the alignment (we will partly relax
the latter assumption later in the paper). Let us denote the alignment as X = {xi,j }, with xi,j being the j th
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character in the ith sequence (1 ≤ i ≤ n, 1 ≤ j ≤ L). For now, we assume that every xi,j belongs to an
alphabet �, e.g., � = (A,C,G,T) (it is convenient to impose an ordering on the alphabet). The j th column
of the alignment will be denoted Xj . We will use the terms “column” and “site” interchangeably.
Let a tree model ψ be defined as a tuple of four parameters, ψ = (Q, τ ,β,π), with Q a substitution rate

matrix, τ a tree topology, β a vector of branch lengths, and π a vector of equilibrium base frequencies. The
matrix Q is of dimension |�| × |�| and defines a continuous-time Markov process for base substitution
(to be described below). The topology τ , in general, is a binary tree with n leaves, and thus has 2n − 1
nodes and 2n− 2 edges (usually called “branches”). For some substitution models, however (ones known
as “reversible”), the tree is unrooted, and effectively has one fewer node and edge. The vector β assigns
a nonnegative real value to each branch of the tree, representing its evolutionary length, usually as an
expected number of substitutions per site (see below). The vector π is of dimension |�| and describes the
background frequency at which each base appears. We will adopt the commonly used practice of estimating
π directly from X, by measuring the observed frequency of each base, and subsequently considering it a
fixed parameter.

2.1. Computing the likelihood of a tree model

The critical step of computing the likelihood of a given tree model, P(X|ψ) is accomplished using the
“pruning” algorithm of Felsenstein (1973, 1981). The sites of the alignment are assumed independent, so
that P(X|ψ) = ∏L

i=1 P(Xi |ψ). The probability of each site is P(Xi |ψ) = ∑
L P(L,Xi |ψ), where L is a

labeling of the n− 1 ancestral nodes of the tree with elements from � (the labels at the leaves are fixed
by Xi ). Felsenstein’s algorithm uses dynamic programming to compute this sum efficiently, as follows.
Let u be any node in τ , and let v and w be its children. In addition, let tv and tw be the lengths of the
branches connecting u to v and u to w, respectively. Suppose that we can compute the probability of base
b replacing base a over a branch of length t , which we will denote P(b|a, t) (see below). Now, following
Durbin et al., we denote by P(Lu|a) the probability of all of the leaves below node u given that the base
assigned node u is an a (implicitly conditioned on ψ). The algorithm is defined by the recursion

P(Lu|a) =




I (a = xu) if u is a leaf

∑
b

P (b|a, tv)P (Lv|b)
∑
c

P (c|a, tw)P (Lw|c) otherwise
(1)

where I is the indicator function and xu is the element of Xi corresponding to leaf u. The total probability
of Xi is given by P(Xi |ψ) = ∑

a πaP (Lr |a), where r is the root of the tree. Felsenstein’s algorithm
allows the likelihood of the model to be computed in time linear in the size of the alignment (assuming
|�| is a small constant).
The maximum-likelihood tree model is defined as

ψ̂ = argmax
ψ

P(X|ψ). (2)

Estimation of ψ̂ is usually accomplished by partitioning the free parameters of ψ into τ and (Q,β); for
any given tree topology, (Q,β) are optimized using an EM or generic nonlinear optimization algorithm
(e.g., a quasi-Newton or conjugate gradients algorithm), and this step is repeated for all possible values
of τ (a priori knowledge or heuristic methods may be used to reduce the set of topologies to consider). If
the topology is assumed to be known, as in our case, the problem is greatly simplified.

2.2. Models of DNA substitution

Felsenstein’s algorithm depends on efficient computation of P(b|a, t), the probability that a base b is
substituted for a base a over a branch of length t , for any bases a, b ∈ � and any nonnegative real value t .
Such probabilities are generally based on a continuous-time Markov model of base substitution, with the
instantaneous rate of replacement of each base for each other defined by the rate matrix Q (Yang et al.,
1994; Whelan et al., 2001). The various available substitution models can be seen as alternative ways of
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parameterizing Q, usually with the goal of reducing as much as possible the number of free parameters to
optimize while still providing a sufficiently rich model. As a continuous-time Markov matrix, Q = {qi,j }
(1 ≤ i, j ≤ |�|) is constrained to have each of its rows sum to zero; furthermore, the matrix is by
convention scaled so that the expected rate of substitution at equilibrium is one, which has the effect of
establishing the unit of branch lengths to be expected substitutions per site. Thus, for |�| = 4 (DNA),
Q has at most 42 − 4 − 1 = 11 free parameters. Allowing all 11 parameters to be free results in the
“unrestricted” (UNREST or UNR) substitution model. Imposing the constraint of “reversibility,” which
says that πiqi,j = πjqj,i for all i and j , reduces the number of parameters to 5 (the REV model). One
of the simplest models still in wide use is that of Hasegawa, Kishino, and Yano (1985) (the HKY model),
which has a single parameter, κ , representing the ratio of the rates of transitions to transversions. The UNR,
REV, and HKY substitution models, all of which will be used in this study, correspond to parameterizations
of Q as follows1:

QUNR =




− a b c

d − e f

g h − i

j k l −


 QREV =




− aπC bπG cπT
aπA − dπG eπT
bπA dπC − fπT
cπA eπC fπG −




QHKY =




− πC κπG πT
πA − πG κπT
κπA πC − πT
πA κπC πG −




The “−” symbols along the main diagonals indicate elements to be defined as qi,i = − ∑
j :j 
=i qi,j .

The probability of any substitution along a branch of length t is obtainable as a function of Q and t .
Let P(t) be the matrix of substitution probabilities for length t . This matrix is given by P(t) = eQt , where
eQt = ∑∞

i=0
(Qt)i
i! (Karlin and Taylor, 1975; Liò and Goldman, 1998). Matrix Q is generally diagonalizable

as Q = S�S−1, allowing P(t) to be computed as P(t) = Se�tS−1, where e�t is the diagonal matrix
obtained by exponentiating each element on the main diagonal of �t .

2.3. Allowing for different rates at different sites

An obvious deficiency of the original method of Felsenstein is its assumption that substitutions at each
site occur at the same rate. Variation in the rate of substitution can be allowed for by introducing an
appropriately distributed random scaling factor for the branch lengths. Yang has developed a method in
which a gamma distribution is assumed and its shape parameter α is estimated from the data (Yang, 1993,
1994). For computational tractability, the gamma distribution is discretized into k rate categories, and a
rate constant rj (1 ≤ j ≤ k) is computed for each category (the values r1, . . . , rk are a function of α). The
probability P(Xi |ψ) can be approximated as

P(Xi |ψ) =
k∑
j=1

1

k
· P(Xi |(Q, τ , rjβ,π)), (3)

which can be computed with k invocations of Felsenstein’s algorithm. Yang showed that the improvement
in likelihoods drops off quickly after about k = 3 and recommended k = 4 as an appropriate choice.

Felsenstein and Churchill (1996) observed that any “halfway realistic” model of rate variation should
also reflect the tendency of evolutionary pressures to act in similar ways at spatially proximate positions,
and they introduced a model that also uses a discrete set of rate categories, but additionally assumes sites
are assigned to categories by a Markov process. This process is defined by an autocorrelation parameter λ:

1Note that one degree of freedom is lost in each case due to the constraint on the scaling of the matrix—that is,
that

∑
i,j :i 
=j πiqi,j = 1.
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if column Xi−1 is assigned to category j , then with probability λ, column Xi will be assigned to category
j , and with probability 1 − λ, Xi will be assigned to a category drawn at random from the equilibrium
distribution for all categories, denoted f . Thus, the transition probabilities between the k modes are given
by a k × k Markov matrix C = {cj,l}, with

cj,l = λI (j = l)+ (1 − λ)fl. (4)

This Markov process will achieve the distribution f at stationarity. Felsenstein and Churchill showed that
the total probability of an alignment (which must consider all possible assignments of categories) can be
computed efficiently using a recursive dynamic-programming algorithm, which is equivalent to the forward
algorithm (Durbin et al., 1998). Similarly, the maximum-likelihood assignment of sites to categories can be
obtained by the Viterbi algorithm, and the posterior probability that each site is assigned to each category
can be obtained by posterior decoding (see Section 2.4). Yang independently developed a very similar
method, which uses the rate categories defined by the discrete gamma method and derives the transition
probabilities between them according to a bivariate gamma distribution. Thus, the parameter α (a free
parameter in the fitting procedure) defines the rate categories (Felsenstein and Churchill left them to be
set by the user). Another free parameter, ρ, fills the role of λ, but influences the transition probabilities in
a more complex way.
In this paper, we use a hybrid strategy: we define rate categories according to the discrete gamma

method, but we define autocorrelation in terms of the parameter λ, using Equation (4). In this way, the
rate categories are chosen to fit the data, but we avoid some complexity in coding and simplify the
extension to multiple functional categories. This method also allows us to use a uniform distribution for
f (see Equation (4)), because of the way the rate categories are chosen; thus, cj,l = 1−λ

k
if j 
= l and

cj,j = λ+ 1−λ
k

. We consider λ as a free parameter, but simplify the fitting process by proceeding in two
steps: first, we estimate α, along with Q and β (using to the standard discrete gamma method); then we
estimate λ with all other parameters fixed (a one-dimensional line search is adequate here; we use Brent’s
method [Press et al., 1992]). This strategy is not guaranteed to find the true maximum-likelihood estimate
of (ψ, α, λ), but it seems to provide a close approximation, because the other parameters are insensitive
to λ (as noted by Yang [1995]). Our model reduces to the discrete gamma model when λ = 0.

2.4. Allowing for different categories of sites

The idea of modeling changes in rate as a Markov process can be generalized to allow for k arbitrary
tree models, ψ1, . . . ,ψk , not necessarily related in any particular way. The only requirement is that
we know the probability that any site Xi obeys model ψj , given that the previous site, Xi−1, obeys
model ψj ′ . The different tree models might describe different “functional categories” of sites, rather
than different rate categories. For example, one category might consist of sites in first codon positions,
others of sites in second and third codon positions, and another of noncoding sites; the Markov transition
probabilities might reflect the high probability that a second codon position follows a first codon position,
the low but nonzero probability that a noncoding site follows a second codon position, and the zero
probability that a third codon position follows a first codon position. Alternatively, the functional categories
might correspond to secondary structural characteristics, as in the models of Thorne, Goldman, et al.
(Thorne et al., 1996; Goldman et al., 1996; Liò et al., 1998), or to any biological property that changes in
some nonrandom way along the length of biological sequences (e.g., GC content, CpG incidence, tertiary
structure). Usually, the topologies of the tree models will be the same, but no such constraint is required;
indeed, allowing different topologies can be useful in detecting recombination (Husmeier and Wright,
2001).
Let φ = (φ1, . . . , φi, . . . , φL), 1 ≤ φi ≤ k, denote an assignment of tree models to sites, representing

the hypothesis that each site obeys the assigned tree model (φi is the index of the tree model assigned
to column Xi). In addition, let A = {aj,l} (1 ≤ j, l ≤ k) be the k × k matrix of transition probabilities
between tree models. The joint probability of the entire alignment X and the assignment φ is given by

P(X,φ) =
L∏
i=1

aφi−1,φi P (Xi |ψφi ) (5)
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where φ0 = 0 and a0,φ1 is the probability of beginning with tree model φ1. Described in this way, the
model can be seen to be a hidden Markov model whose emission probabilities are determined according
to a phylogenetic model of molecular evolution. In practice, the dimensions of “space” (the transition
probabilities of the HMM) and “time” (the phylogenetic model) are quite separable: one needs only
to compute P(Xi |ψj ) for all 1 ≤ i ≤ L and all 1 ≤ j ≤ k, then to pass these values to generic
HMM routines as an L × k matrix of emission probabilities. The standard algorithms are available to
compute the total probability of X (

∑
φ P(X,φ); the forward algorithm), a maximum-likelihood assignment

(argmaxφ P(X,φ); the Viterbi algorithm), and the posterior probability that any site Xi is assigned tree
model j (P(φi = j |X); posterior decoding) (Durbin et al., 1998).
It is common in phylogenetic analysis to label the columns of an alignment with functional categories

and to compute the probability of each column conditional on its label. This technique can result in
dramatically improved likelihoods, due to quite different substitution properties at sites of different types
(Yang, 1996). By modeling functional categories with an HMM, however, we can benefit in the same way
even when sequences are unannotated or annotation is unreliable. Furthermore, this framework provides a
means to infer or predict the correct label at each site—which may be taken, for example, to be the one
corresponding to a maximum-likelihood assignment, or the one of highest posterior probability. Note that
we have allowed differences between functional categories in the proportions of branch lengths, or in the
pattern of substitution (as described by the rate matrix), as well as in the overall rate of evolution. This
capability will be especially important when inferring functional labels, because it provides an additional
means for discriminating between sites of different categories.
In this paper, we assume a “supervised learning” strategy for the inference or prediction of labels, with

a training step based on labeled data. A tree model can be fit separately to each functional category of
the labeled training data, and the HMM transition probabilities can be estimated by a simple counting
method (using pseudocounts as necessary to avoid overfitting). It would be possible, however, to learn
HMM transitions directly from the unlabeled data, using the Baum-Welch algorithm (Durbin et al., 1998).
As long as the algorithm is initialized with approximately the right parameter settings, it should converge
on a reasonable HMM. Such a strategy would be expensive, however, as all tree models would need to be
reestimated on each iteration of the algorithm.
Having presented a generalization of rate categories, we now distinguish them again as a special case.

Even in sites of the same functional category, evolutionary rate appears to vary at the regional level,
as well as from site to site (Matassi et al., 1999; Williams and Hurst, 2000; Mouse Genome Sequenc-
ing Consortium, 2002). Rate categories, therefore, are in a sense orthogonal to functional categories,
and it may be useful when inferring functional categories to allow changes in rate within each func-
tional class (for example, to allow a slow-evolving noncoding region to be distinguished from a medium-
or fast-evolving coding region). Both functional categories and rate categories can be accommodated if
we create several “scaled” versions of each functionally determined tree model and define the Markov
transition matrix as a cross product of two HMMs: one with a state for each rate category and one
with a state for each functional category (the implicit assumption is that the two Markov processes are
independent).
In particular, suppose we have k rate categories and q functional categories. Suppose further that the

q functional categories are described by distinct tree models ψ1, . . . ,ψq , that the transition probabilities
among the functional categories are given by a q × q matrix F = {fi,j } (1 ≤ i, j ≤ q), and that the
transition probabilities among the rate categories are given by a k × k matrix C = {ci′,j ′ } (1 ≤ i′, j ′ ≤ k;
C may be defined by Equation (4)). Let ri,i′ (1 ≤ i ≤ q, 1 ≤ i′ ≤ k) be the rate constant for the i′th
category of ψ i . We define a new sequence of kq tree models, (ψ ′

1,1, . . . ,ψ
′
1,k, . . . ,ψ

′
q,1, . . . ,ψ

′
q,k), such

that, for all 1 ≤ i ≤ q and 1 ≤ i′ ≤ k,

ψ ′
i,i′ = ri,i′ψ i = (Qi , τ i , ri,i′βi ,π i , αi). (6)

In addition, we define a new kq × kq transition matrix A = {al,m} (1 ≤ l, m ≤ kq) such that, for all
1 ≤ i, j ≤ q, and 1 ≤ i′, j ′ ≤ k,

a(i−1)k+i′,(j−1)k+j ′ = fi,j ci′,j ′ . (7)
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The methods described above can now be applied without change to (ψ ′
1,1, . . . ,ψ

′
q,k) and A with the

desired effect. It may be necessary when interpreting results, however, to “project” states onto the dimension
of interest; for example, the “raw” Viterbi path might be converted to a representation in terms of functional
categories only.

2.5. Allowing for missing data

With real data, it is usually the case that certain characters in the alignment X are not consistent
with the assumed evolutionary process, in that they do not belong to the alphabet �. Alignment gaps
are the most common source of such characters, but they may also arise from failure of the sequencing
process to resolve bases unambiguously. It is common in phylogenetic analysis simply to discard any
column containing a character not in �; this practice, however, is undesirable for alignments of divergent
sequences, in which only a small minority of columns may be completely without gaps. (Another strategy
sometimes used for gaps, which has obvious deficiencies, is to treat the gap character as an additional
element in �). Various alternatives have been proposed for handling gaps, including ones that actually
derive phylogenetic information from them (Mitchison, 1999). In this paper, we employ a simple approach
in which gaps and all other characters not in � are regarded uniformly as missing data. This method is
essentially neutral with respect to such characters; they neither contribute phylogenetic information nor
take away from it by “contaminating” a portion of the alignment. The method is not novel—indeed, it was
briefly mentioned by Felsenstein (1973) and has been implemented in PHYLIP (Felsenstein, 1993) and
PAML (Yang, 1997), among other packages—but we will describe it in some detail because it turns out
to be useful in the extension of Section 2.6.
Consider a single column of an alignment, Xi , some elements of which are missing. Let M be the set

of all columns that result from assigning characters from the alphabet � in place of missing elements
in Xi . The total probability of Xi is the sum of the probabilities of all elements of M , P(Xi |ψ) =∑

Y∈M P(Y|ψ). (If all elements of Xi are missing, then P(Xi |ψ) = 1). It may be helpful to regard
the missing elements of Xi as “wildcards” and to denote them “*”. M can be thought of as the set
of columns that “match” Xi , allowing for wildcards. For example, a column Xi =(A,C,C,*,A)T has
M = {(A,C,C,A,A)T, (A,C,C,C,A)T, (A,C,C,G,A)T, (A,C,C,T,A)T}. Notice that incomplete wildcards are
also possible. For example, the ambiguity character R (purine) might be allowed to match only A or G.
Felsenstein’s algorithm, because it is already summing over possible assignments of characters to nodes

in the tree, requires only a very minor change to accommodate missing data of this kind. Recall that the
base case of the recursion, which is applied when a node u is a leaf, is P(Lu|a) = I (a = xu), for any
base a (see Equation (1)). To allow for missing data, we need only replace “a = xu” with “a matches xu.”
Thus, at a leaf u corresponding to a “*”, P(Lu|a) = 1 for all a, and as the algorithm works its way from
the leaves to the root of the tree, all possible assignments of bases to u will be considered. With missing
data allowed, Equation (1) generalizes to

P(Lu|a) =




I (a matches xu) if u is a leaf

∑
b

P (b|a, tv)P (Lv|b)
∑
c

P (c|a, tw)P (Lw|c) otherwise.
(8)

Thus, despite that the set M may be exponentially large, missing data can be accommodated with no
additional cost in computation.

2.6. An extension to higher-order states

Our description so far has assumed so-called “0th order” states, in which the emission probability for
column Xi at state (tree model) j , P(Xi |ψj ), depends only on column Xi . Much additional discriminatory
power can be gained in many biological applications through the use of higher-order states. In an N th order
state, the emission probability of Xi at state j is conditioned on the previous N columns, Xi−N, . . . ,Xi−1.
(Gene finders may have states with N as large as 4 or 5 [Krogh, 1997; Burge and Karlin, 1997]). In this
section, we show how to extend the methods discussed so far to the case of N > 0. The essential problem
is to compute P(Xi |Xi−1, . . . ,Xi−N) (here and in the discussion below, conditioning on ψj is implicit).
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By considering conditional emission probabilities of this type, we will effectively model substitution as a
neighbor- or context-dependent process.
Felsenstein’s algorithm can readily be adapted to compute the joint probability, P(Xi−N, . . . ,Xi ): simply

assume an alphabet of size |�|N+1, consisting of all (N + 1)-tuples of characters in �, and adjust the
dimensions of Q (the rate matrix) and π (the vector of equilibrium frequencies) accordingly. This is
essentially what has been done in codon-based models (Goldman and Yang, 1994; Muse and Gaut, 1994;
Pedersen et al., 1998) and models designed to accommodate paired bases in RNA genes (Schöniger and
von Haeseler, 1994; Muse, 1995; Rzhetsky, 1995; Tillier and Collins, 1995). In the case of N = 1,
corresponding to dinucleotides, Felsenstein’s algorithm can be written

P(Lu|a1a2) =




I (a1a2 matches xu,1xu,2) if u is a leaf

∑
b1b2

P(b1b2|a1a2, tv)P (Lv|b1b2)
∑
c1c2

P(c1c2|a1a2, tw)P (Lw|c1c2) otherwise
(9)

where a1a2, b1b2, and c1c2 are variables representing dinucleotides, xu,1xu,2 is the dinucleotide correspond-
ing to leaf u, and the definition of “matching” is extended appropriately for dinucleotides. The computation
of the terms of the form P(b1b2|a1a2, t) works exactly as before, except that Q and P(t) are now of di-
mension |�|2. Similarly, P(Xi−1,Xi ) can be obtained as before from π and the values P(Lr |a1a2) at the
root r , but now π is of dimension |�|2.
The problem is that we need conditional rather than joint probabilities. We can use the property that

P(Xi |Xi−N, . . . ,Xi−1) = P(Xi−N, . . . ,Xi )∑
Y P(Xi−N, . . . ,Xi−1,Y)

where
∑

Y is the sum over all 4n possible assignments of bases in � to the ith column in the alignment.
Despite its exponential size, this sum can be computed efficiently using dynamic programming. It turns
out we have already solved the problem: it can be regarded as an instance of the missing data problem.
The sum

∑
Y P(Xi−N, . . . ,Xi−1,Y) is the same as P(Xi−N, . . . , Xi−1,Z), with Z = (∗, ∗, . . . , ∗)T,

by our definition of missing data. Thus, P(Xi |Xi−N, . . . ,Xi−1) can be computed in two passes through
Felsenstein’s algorithm, with a different initialization for each pass.2 The time to compute the likelihood of
an entire alignment is in general O(nL|�|N+1), for n sequences and an alignment of length L. In practice,
N must remain small (probably at most 2 or 3) for there to be sufficient data to estimate Q and for the
number of free parameters to be kept manageable. For the remainder of this paper, we will assume N = 0
(single nucleotides) or N = 1 (dinucleotides).
Our method as a whole, then, can be summarized as follows. Assume k rate categories, q functional

categories, and an HMM with states of order N . Also assume that the matrix F of transition probabilities
between functional categories and tree models ψ1, . . . ,ψq has been estimated from labeled training data.
To apply the model to an unlabeled dataset, create a new set of kq tree models, according to Equation (6),
and compute the kq × L matrix of emission probabilities, consisting of P(Xi |ψj ) for all 1 ≤ i ≤ L

and 1 ≤ j ≤ kq. Use the missing-data version of Felsenstein’s algorithm (Equation (8)), generalized if
necessary for N > 0, as described above. Now, starting with an arbitrary value for the parameter λ (e.g.,
λ = 0.9), construct a matrix C according to Equation (4) and define A as the cross product of F and
C, according to Equation (7). Compute the total likelihood, using the forward algorithm. Repeat the final
steps until a value of λ is found that maximizes the likelihood. If the Viterbi path or posterior probabilities
are desired, obtain them in a final pass, with λ fixed at its MLE. Notice that, with our approximate method
for estimating λ, the emission probabilities need be computed only once.
For the case of dinucleotides, it remains to find a suitable way to parameterize the 16×16 rate matrix Q.

We consider three alternatives: a fully reversible dinucleotide matrix (R2), a strand-symmetric reversible
matrix (R2S), and a strand-symmetric unrestricted matrix (U2S). In all cases, to reduce the number of free
parameters, we prohibit instantaneous changes involving more than one base (despite biological evidence

2Some care is required when i ≤ N . One can simply regard the missing columns as missing data and apply the
same principle once more. For example, with N = 1, P(X1|X0) = P(Z,X1)

P (Z,Z) = P(Z,X1), where Z = (∗, . . . , ∗)T.
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for such changes [Averof et al., 2000]; as future work, we intend to relax this restriction). Thus, R2 is
defined with Q = {qi,j } such that

qi,j =




0 if i and j differ by > 1 nucleotide

ai,jπj if i and j differ by 1 nucleotide

−
∑
k:k 
=i

qi,k if i = j

where the variables of the form ai,j represent free parameters and ai,j = aj,i for all 1 ≤ i, j ≤ |�|2 (there
are a total of 48 free parameters). Matrix R2S is identical to R2, except for the constraint that ai,j = ai′,j ′
if i′ is the reverse complement of i and j ′ is the reverse complement of j , which cuts the number of
parameters in half to 24. Matrix U2S is identical to R2S except reversibility is not required; it has 48 free
parameters.

2.7. Implementation and data

Code was written in C to support both training and testing. Training is accomplished directly from
sequence annotations, with transition probabilities between functional categories estimated by counting
(pseudocounts optional) and tree models estimated separately for subsets of alignment sites corresponding
to each of the specified functional categories. Optimization of parameters is accomplished using the BFGS
algorithm (Press et al., 1992), with gradients computed using the difference method. The code was shown
to give equivalent results to those of the PAML package (Yang, 1997) for shared models. The core routine
to compute the likelihood of a tree model supports missing data and higher-order states, as well as the
discrete gamma method (code to compute gamma quantiles and mean rates was borrowed from PAML).
The HKY, REV, UNR, R2, R2S, and U2S substitution models were implemented. The software is available
upon request.
For both training and testing, we used portions of a multiple alignment consisting of nearly two

megabases of human sequence, in the region of the cystic fibrosis transmembrane conductance regulator
(CFTR) gene (chromosome 7), and homologous sequence from eight other eutherian mammals (Thomas
et al., 2003) (see species in Fig. 1). The sequences are products of the NISC Comparative Sequencing
Program (www.nisc.nih.gov). The multiple alignment, which is derived from pairwise local alignments,
was produced with the MultiPipMaker program (Schwartz et al., 2003). It contains 2.3 million columns,

FIG. 1. Phylogenetic tree assumed for the nine species (unrooted). Branch lengths are drawn in the proportions
estimated for the AR alignment using the REV model (with discrete gamma).

http://www.nisc.nih.gov
http://www.nisc.nih.gov
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1.9 million of which correspond to human bases. Each column was labeled with one of seven functional
categories (codon positions 1, 2, and 3, intron, 5′ UTR, 3′ UTR, and intergenic), using annotations prepared
at the NISC via a combination of computational and manual techniques (Pamela Jacques Thomas, personal
correspondence). Gene structure in this region is almost perfectly conserved across species (Thomas et al.,
2003). The annotations include ten genes, which together cover 21,084 of the human sequence’s 1.9 million
bases, or about 1% (excluding UTRs). The sequenced region is generally AT rich (GC content 38.5% in
human and 38.6% over all species).
We have focused our analysis on two subsets of sites in the alignment: one corresponding to “ancestral

repeats” (ARs), believed to reflect neutral evolution, and another corresponding to one of the genes,
WNT2, selected because it is relatively short in total length, yet contains significant representation from all
functional classes. The AR subset consisted of sites corresponding to segments of the human sequence that
had been identified by the RepeatMasker program (www.ftp.genome.washington.edu/cgi-bin/RepeatMasker)
as belonging to repeat families that are believed to be ancestral to eutherian mammals—that is, dispersed
and rendered quiescent prior to the eutherian radiation. The same set of families was used as described
recently by the Mouse Genome Sequencing Consortium (2002). More such sites were available than we
could efficiently analyze with our current software, so we selected 20,000 sites belonging to L1 transposons,
with good representation across species. The WNT2 alignment was constructed by simply extracting the
segment of the whole alignment corresponding to the WNT2 gene, along with 2,000 bases of intergenic
DNA on either side. About 60,000 columns resulted of which 50,062 contained human sequence. Of these,
1,083 (2.2%) corresponded to coding regions (361 in each codon position), distributed fairly evenly among
five exons. No sequence was available in this region for two of the nine species, pig and dog.

3. RESULTS

The phylogenetic tree relating the nine species was assumed to have the (unrooted) topology shown in
Fig. 1. This topology is consistent with the accepted taxonomy of the species and does appear to have
the highest likelihood under reversible models (by a wide margin). For the nonreversible UNR model, we
rooted the tree on the branch separating the rodents from the other species, as this resulted in the highest
likelihood. Note, however, that the true root appears to group the rodents and the primates to the exclusion
of the artiodactyls and carnivores (Murphy et al., 2001; Thomas et al., 2003).
We first discuss the effect of using models of increasing richness for base substitution and for rate

variation, within sites of a single functional category. Where appropriate, we compare models using the
standard likelihood ratio test (LRT), which is based on the assumption that twice the difference in their
log likelihoods obeys a χ2 distribution with d degrees of freedom, where d is equal to the difference
in the number of free parameters of the models (Huelsenbeck and Rannala, 1997). Figure 2 shows log
likelihoods for the AR alignment under the five different substitution models and under three models
for rate variation (constant rates, the discrete gamma model with k = 4, and the autocorrelation model,
also with k = 4). The likelihoods are seen steadily to improve as the models become richer in terms of
both substitution and rate variation; however, the improvement obtained from replacing a single-nucleotide
substitution model with a dinucleotide model (e.g., REV with R2) exceeds all others by an order of
magnitude. The LRT is applicable only among REV, HKY, and UNR, which are “nested” (UNR subsumes
REV which subsumes HKY) and among R2S, U2S, and R2 (R2S is subsumed by both U2S and R2). It is
also applicable across rate models for nested substitution models. Among nested models, the improvement
of each model over the next simpler alternative is easily statistically significant, except in the case of R2
over R2S.3 It appears that the simplifying assumption of strand symmetry is reasonable in neutral DNA; the
assumption of reversibility is less well-supported. The LRT is not applicable between the single-nucleotide
and dinucleotide models, but the improvement of the dinucleotide models appears to be overwhelmingly
significant. This improvement holds up well in cross-validation experiments and in comparisons based on
the Bayesian information criterion (Siepel and Haussler, 2004a).

3The LRT shows R2 to offer a significant improvement over R2S with constant rates, but in the discrete gamma
and autocorrelated cases, the improvement is marginal.

http://www.ftp.genome.washington.edu/cgi-bin/RepeatMasker
http://www.ftp.genome.washington.edu/cgi-bin/RepeatMasker
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FIG. 2. Log likelihoods for the AR alignment under various substitution and rate models. Values are shown relative
to HKY with constant rates.

Estimates of key parameters were generally similar under all models. The branch lengths were highly
consistent, although they did tend to increase slightly with models of increasing richness, as has been noted
previously (Yang et al., 1994). Estimates of the parameter α, which determines the shape of the gamma
distribution in models that allow rate variation, were similar under single-nucleotide models (5.7 [HKY],
6.0 [REV], and 6.1 [UNR]), but increased significantly when switching to dinucleotide substitution models
(8.6 [R2S], 8.7 [U2S], and 9.3 [R2]).4 This may be partly because some apparent rate variation can be
explained by considering the context of each substitution, but could also be an artifact of applying the
discrete gamma model to pairs of sites rather than individual sites. The autocorrelation parameter λ was
fairly insensitive to the substitution model (all estimates were between 0.95 and 0.97). For the dinucleotide
models, the 16 × 16 rate matrix Q reflected a very strong “CpG effect” (high mutation rate of CG to
TG, due to methylation and spontaneous deamination [Lewin, 2000]); indeed, the estimates of the rate
of change from CG to TG (and its reverse complement, CA) exceeded all others by nearly an order of
magnitude. The estimated rates of CpG transversions (CG→AG and CG→GG) were also considerably
higher than those of other transversions. A variety of other, more subtle, differences in estimated rates
could be seen, suggesting that the pattern of context-dependent substitution is complex (see Siepel and
Haussler [2004a] for a more detailed discussion of these issues).
To contrast coding and neutral DNA, we performed a similar experiment with all bases in the second

codon position of the entire two-megabase alignment (Fig. 3) (we did not apply the autocorrelation model
to this dataset, because it consists of sites that are not adjacent). The results were similar, except that
the advantage of the dinucleotide models (which here describe bases in the 1st and 2nd codon positions)
is much less pronounced, and the improvement due to the discrete gamma model is somewhat more
pronounced (as expected). Not surprisingly, strand symmetry is seen to be a far poorer assumption in
coding DNA (compare the differences between R2S and R2 in Figs. 2 and 3). The estimated rate matrix
(not shown) appears to capture something about the pattern of amino acid substitutions, but the effect is

4Estimates of α were quite high in all cases, consistent with the assumption of neutral evolution. The low rate
variation in this dataset explains the relatively small improvement seen with the discrete gamma model.
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FIG. 3. Log likelihoods for sites in the second codon position, under various substitution and rate models. Values
are shown relative to HKY with constant rates.

imperfect, because many dinucleotide substitutions correspond to mixtures of quite different amino acid
substitutions (see Discussion). This is apparently what causes the dinucleotide models to be of less benefit
in coding than in noncoding regions. Nevertheless, many rate-matrix parameters appeared to be informative.
For example, under R2 with constant rates, after adjusting for equilibrium frequencies, one of the largest
rates was for GT↔AT (Val↔Ile/Met, BLOSUM62 scores 3 and 1), and one of the smallest for AT↔AA
(Ile/Met↔Asn/Lys, BLOSUM62 scores −3, −3, −2, and −1).
Next, we examine the effect of considering functional categories. Figure 4 shows log likelihoods for

the WNT2 alignment, with 1, 4, and 6 functional categories and various models for substitution and rate
variation. For the 4-category model, we classified all sites as first-, second-, or third-codon positions, or
“other,” and for the the six-category model, we partitioned the “other” category into introns, 5′ UTR sites,
and intergenic sites (separating out 3′ UTR sites seems to be of little benefit). The transition probabilities of
each HMMwere estimated from the WNT2 alignment itself, by counting changes in labels; no pseudocounts
were used. In the case of multiple functional categories and autocorrelated rates, a cross-product HMM was
used, as discussed in Section 2.4. A very large improvement is seen when moving both from one-category
to four-category models and from four-category to six-category models under both REV and R2 (note the
scale of the graph), with the improvements under R2 somewhat more pronounced. For each substitution
model and category combination, improvements achieved by moving to the discrete gamma model are
significant but modest; however, enormous improvements are realized by introducing autocorrelation. This
effect appears to result from highly autocorrelated rates (estimates of λ were all greater than 0.99).5

Comparison with likelihoods conditional on a priori labels of functional categories (which in this case are
the same ones used to train the HMM and tree models), indicate that the HMMs result in an increase of
between 220 and 490 units of log likelihood (results not shown).

5Models with multiple functional categories have not resulted in higher estimates of λ, as might have been expected.
The reason may be that, for the one-state models, strong autocorrelation in noncoding regions overwhelms weak
autocorrelation in coding regions (recall that the latter make up only about 2% of all sites).
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FIG. 4. Log likelihoods for the WNT2 alignment, for the REV and R2 substitution models, three models of rate
variation, and sets of one, four, and six functional categories. Values are shown relative to REV with constant rates
and one functional category.

4. DISCUSSION

A hidden Markov model and a phylogenetic model can be combined to create a new model of molecular
evolution that captures both spatial and temporal aspects of the process. Our results suggest that the good-
ness of fit of such a model is improved significantly by allowing for context-dependent substitution rates
(corresponding to higher-order states), autocorrelated rate variation, and multiple functional categories.
Furthermore, each type of improvement occurs more or less independently of the others, and their combi-
nation is especially effective. Judging by the case of dinucleotides, context-dependent substitution models
are particularly beneficial, especially in neutral DNA, where the CpG effect is strong. The improvement
in coding regions is somewhat muted by a mismatch with the naturally occurring tuple size of three. The
methods described here can be extended to nucleotide triples, but at the cost of much larger numbers of free
parameters and more expensive likelihood computations, demanding alternative strategies for parameter
estimation. In recent work, we have shown that considering nucleotide triples, rather than dinucleotides,
can produce a substantial further improvement in goodness of fit, for both coding and noncoding data
(Siepel and Haussler, 2004a).
Our approach to the problem of context dependence is limited in certain ways compared to strategies that

have recently been proposed for the two-sequence case (Jensen and Pedersen, 2000; Pedersen and Jensen,
2001; Arndt et al., 2002). For example, our model imposes unidirectional dependence of sites rather than
allowing dependencies to flow in both directions, and it does not permit context effects to “cascade” be-
yond the limits of an (N + 1)-tuple along each branch of the tree. In addition, our model is not faithful
to the assumed process in that it does not require the ancestral states associated with overlapping tuples to
be consistent. Nevertheless, it is a valid probabilistic model in the sense that the probabilities of all possi-
ble inputs (of a given size) sum to one, and it has the advantage over “process-based” models of allowing
likelihoods to be computed exactly and efficiently. As future work, we hope to compare this “empirical”
model with process-based models, using MCMC or one of the approximation techniques available for graph-
ical models with “loops” of dependency (Murphy et al., 1999; Wainwright et al., 2001; Yedidia et al., 2001).
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We have recently learned of independent work on combined phylogenetic and hidden Markov mod-
els by Pedersen and Hein (2003) and McAuliffe et al. (2003), specifically focused on gene prediction.
Pedersen and Hein used a codon-based phylogenetic model for coding states and used models that assume
independent sites for noncoding states; McAuliffe et al. used only independent-site models. These papers
include some extensions not discussed here (e.g., McAuliffe et al. combine phylogenetic models with a
generalized hidden Markov model, which allows for arbitrary length distributions of features such as exons
and introns) and report encouraging gene-prediction performance in preliminary experiments. However,
it appears that gene-prediction performance can be improved substantially by incorporating higher-order
states into a combined phylogenetic HMM (Siepel and Haussler, 2004b).
It is worth noting that combined phylogenetic and hidden Markov models could potentially be useful in

a wide variety of bioinformatics problems, including multiple alignment (as noted by Pedersen and Hein
[2003]) and homology searching. We have focused in this paper on DNA sequences, but phylogenetic
HMMs could be used as well with amino acid sequences, given appropriate models of substitution.
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